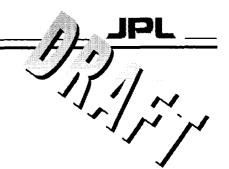

### **Cassini Science Planning Process**



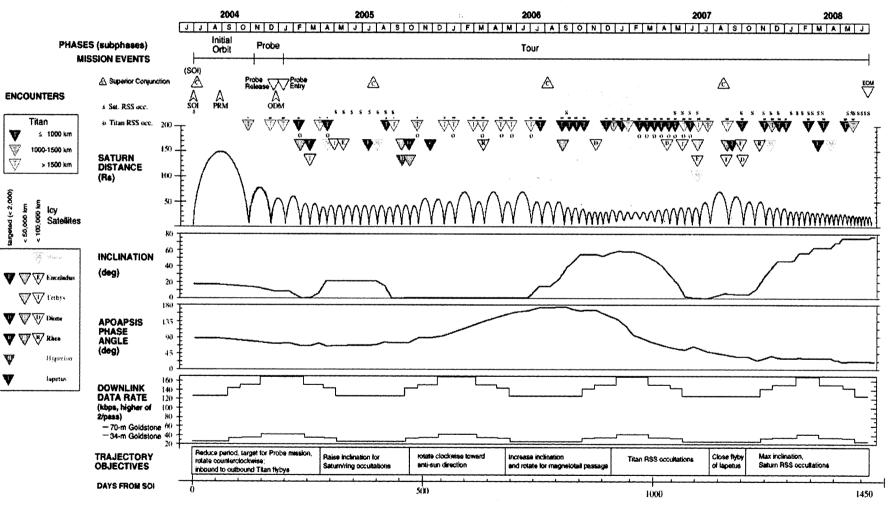

#### **Brian Paczkowski**

Cassini Science Planning Manager, JPL

**Trina Ray** 

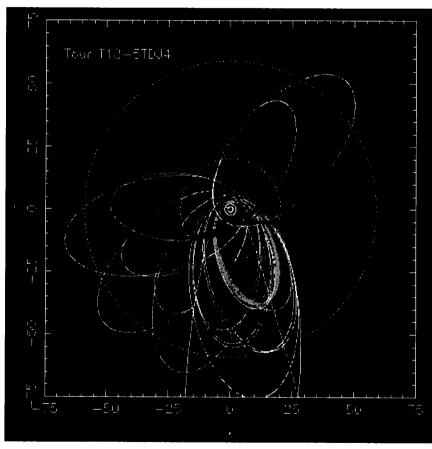
Cassini Science Planning Engineer, JPL



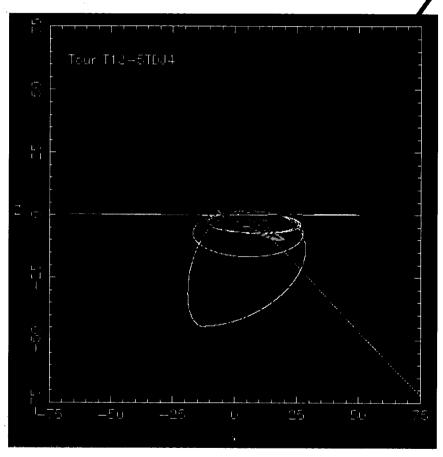



#### **Mission Overview**

- Combined Saturn orbiter and Titan atmospheric probe (Huygens)
  - Three-axis stabilized spacecraft (reaction wheels and thrusters)
  - 27 science investigations from 12 orbiter, 6 Huygens instruments
  - Once fixed high-gain antenna, two low-gain antennas
  - Three RTGs for power
  - Redundant main engines, attitude thrusters (8)
  - Two Solid-State Recorder of 2.0 Gbits each
- Launched 15 October 1997 on Titan IV/Centaur into 6.7-year Venus-Venus-Earth-Jupiter trajectory to arrive on 1 July 2004
- 4 year Prime Mission
  - 75 orbits
  - 44 targeted Titan flybys
  - 9 targeted icy satellite flybys
  - 41 sequence loads




#### **Tour Overview**



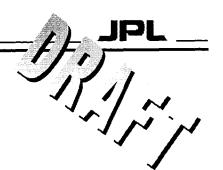



## **Tour Overview (Cont'd)**



**North Pole View** 




**Side View** 



## **Mission Comparison**

|                 | CHARACTERISTIC                     | VOYAGER          | GALILEO                              | CASSINI                      |
|-----------------|------------------------------------|------------------|--------------------------------------|------------------------------|
| MISSION         | Orbits                             | 6 (flybys)       |                                      | 75                           |
|                 | Average Orbit Duration             | 120 days (flyby) | 8 weeks<br>(5 wks - 8 wks)           | 3 weeks<br>(1 wk - 3months)  |
|                 | Operations Environment             | Centralized      | Centralized                          | Distributed                  |
|                 | Prime Mission Duration             | 2 years          | 2 years                              | 4 years                      |
|                 | Total Mission Data Volume          | ~4,000 Gbits     | 2 Gbits                              | ~3,000 Gbits                 |
| SPACECRAFT      | Scan Platform                      | Yes              | Yes                                  | No                           |
|                 | Maximum Turn/Slew Rates            | 1°/sec           | 1°/sec                               | 0.4°/sec-RCS<br>0.2°/sec-RW  |
|                 | Power Modes                        | 1                | 8                                    | 12                           |
|                 | Recorder Volume                    | .5 Gbits         | .9 Gbits                             | 4 Gbits                      |
|                 | lmaging Instruments                | 2                | 2                                    | 8                            |
|                 | Science Instruments                | 11               | 12 Orbiter<br>6 Probe                | 12 Orbiter<br>6 Probe        |
| UPLINK PLANNING | Science Plan Development Time      | 9:1              | 5:1                                  | 3:1                          |
|                 | Sequence Loads/Orbit (Average)     | 10 loads/flyby   | 3 (1 encounter,<br>2 orbital cruise) | 4-5 weeks<br>(n orbits/load) |
|                 | Targets & Periapses/Load (Average) | 10 loads/flyby   | 1periapse,<br>1satellite             | 2 periapse,<br>2 satellites  |
|                 | Sequence Load Size                 | 2.5 Kwords       | 16 Kwords                            | 150 Kwords                   |
|                 | Science Operations Staff (JPL)     | ~60              | 60                                   | 23                           |
| <b>ח</b>        | Investigation Team Size            | ~150             | 187                                  | 254                          |





## **Science Planning Challenges**

- Distributed Operations
  - Remoteness & Timezones
  - Mismatch between spacecraft design and operations environment
- Lack of Scan Platform
  - Instrument pointing constraints
  - Downlink/observation time-sharing
- Simultaneous Ops
  - Long-Term/Short-Term Science Planning Development
  - Sequence development and execution
- FSW/GSW development
  - Timeliness of software development
- Complexity of Spacecraft Operations
  - Pointing constraints
  - Power modes
  - Telemetry modes
- Tour Selection
  - Discipline focused groups
- PSG ownership of process
- Funding & Schedule Drivers





## **Science Planning Timeline**

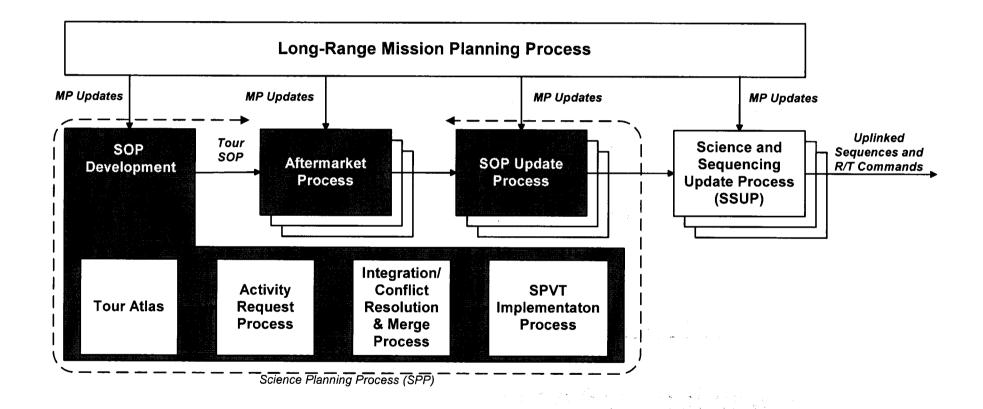
| When                             | What (goals)                                               | Who                                                                                 | Details                                                                                                                                                                     |
|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 years before<br>Prime Mission | Tour Design<br>(maximize science<br>opportunity)           | Science Community, Mission<br>Planning (some Spacecraft)                            | Science experiment trade-offs, navigation and uplink development capabilities.                                                                                              |
| 4 years before PM                | Integration (negotiate best science compromise)            | Science Planning, Science<br>Community (some Spacecraft,<br>some Mission Planning)  | Break up entire mission by science discipline and negotiate shared resources (pointing, power, telemetry, and data volume), lack of a scan platform makes this a challenge. |
| 2 years before PM                | Implementation (validate basic sequence design)            | Science Planning, Science<br>Operations Spacecraft Team<br>(some Mission Planning)  | 3 chances to get a skeleton sequence of the shared resources in place and validated, distributed operations makes this a challenge.                                         |
| 20 weeks before execution        | Adaptation (update integrated plan)                        | Science Planning, Science<br>Community (some Spacecraft,<br>some Mission Planning)  | Update integrated plan based on new discoveries, science data analysis, spacecraft/instrument performance changes, etc.                                                     |
| 15 weeks before execution        | Implementation Update<br>(update basic sequence<br>design) | Science Planning, Science<br>Operations Spacecraft Team,<br>(some Mission Planning) | 1 chance to update the skeleton sequence to any updated science compromises and/or new discoveries.                                                                         |
| 10 weeks before execution        | Sequencing<br>(validate entire sequence)                   | Sequence Lead, Science<br>Operations, Spacecraft Team<br>(some Science Planning)    | 2 cycles to create a complete sequence, all commands in place and validated, complexity of spacecraft and plans make this a challenge.                                      |



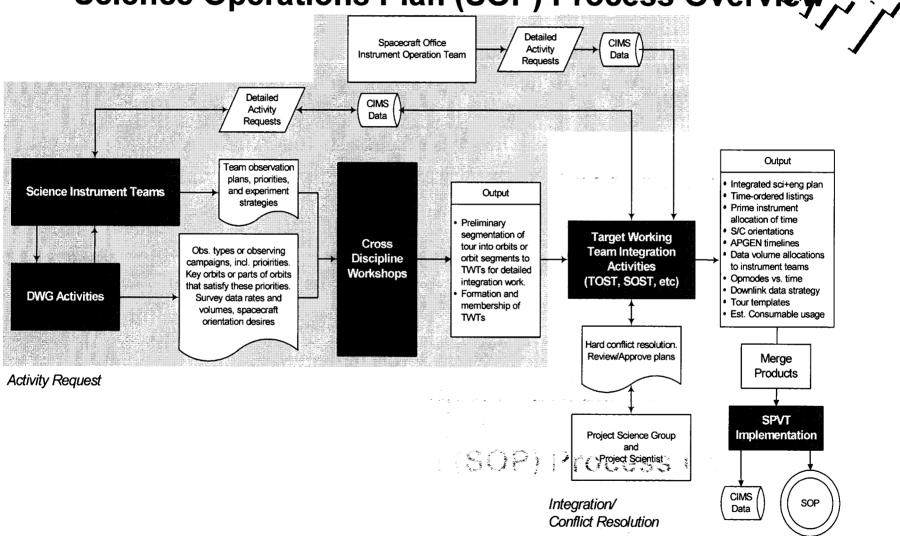
# ion //

## **Science Planning Process Selection**

#### Integration


- Option 1
  - Small science-savvy group at JPL responsible for the integration of the Tour.
    - Cons: Not scientifically optimized; huge workload on small group; politics of empowerment
    - Pros: Rapid integration; problem solution inheritance
- Option 2
  - Large single PSG group that integrates the entire Tour except the target flyby.
    - Cons: Large membership makes for slow process; large group dynamics issues
    - Pros: Distribute workload amongst all PSG members; problem solution inheritance; science community representation;
- Option 3
  - Smaller PSG groups with responsibilities split up by science discipline and/or target body.
    - Cons: Better communication/coordination between integration groups; some members needed to support multiple groups
    - Pros: 4 parallel efforts increases workforce utilization; discipline/target body focused group;
       PSG co-leadership of group (empowerment); optimized science plan

#### Implementation


Significant inheritance from Galileo Science Planning Operations Process



## Science Planning Process Schedule/Flow



Science Operations Plan (SOP) Process Overview



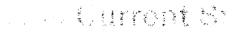


## Science Planning Process Current Status

#### SOP Integration

- Approach Science: 100% complete on May 2003.
- Tour Science: 100% complete on January 2004.

#### SOP Implementation


- Approach Science: 100% complete and 2 of 3 sequences have executed on board the spacecraft.
- Tour Science: A total of 68% (28 out of 41) of the Tour sequences "complete" and "on-the-shelf".

#### Aftermarket (Integration Update)

Updated the plans for 3 of 41 sequences.

#### SOP Update

Completed 3 of 41 sequences.







#### **Lessons Learned**

- Better use of concurrent engineering practices related to development & operations
  - Consideration of operability factored into spacecraft development
- Distributed operations is not the low cost operations option
  - Redundant hardware and software infrastructure
  - Training and cross-training
- Exercising the systems as early as possible prior to prime mission
  - Jupiter Flyby
  - Verification and Validation (V&V) System Testing
- Effective communication
  - Web-based interactions
- Centralized web-based database critical

THE HILL OF BUILDING SOURCE

a cost oper those epited